Lecture 37

More DFAs, Pumping Lemma

More DFAs

Example: Construct a DFA whose language is the set of binary strings that contain even number of 0 s and even number of 1 s .

- q_{0} corresponds to even number of 0 s and $1 s$.
- q_{1} corresponds to even number of 0 s and odd number of $1 s$.
- q_{2} corresponds to odd number of 0 s and $1 s$.
- q_{3} corresponds to odd number of 0 s and even number of $1 s$.

More DFAs

Example: Construct a DFA whose language is the set of binary strings whose decimal representation is divisible by 3 .

Idea: We process the input string w from left to right and keep track of $\operatorname{dec}(x) \% 3$, where $\operatorname{dec}(x)$ is the decimal representation of the prefix x of w that we have processed. Suppose $\operatorname{dec}(x) \% 3=k$, where $k \in\{0,1,2\}$. Then,

- $\operatorname{dec}(x 1) \% 3=(2 * \operatorname{dec}(x)+1) \% 3=(2 * k+1) \% 3$
- $\operatorname{dec}(x 0) \% 3=(2 * \operatorname{dec}(x)+0) \% 3=(2 * k+0) \% 3$

- q_{0} corresponds to $\operatorname{dec}(x) \% 3=0$.
- q_{1} corresponds to $\operatorname{dec}(x) \% 3=1$
- q_{2} corresponds to $\operatorname{dec}(x) \% 3=2$

More DFAs

Example: Construct a DFA that decides $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
Does not seem possible as we need to keep a count of number of 0 s but we can have only a fixed/finite amount of states in the DFA.

Proof of why there is no DFA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$:
Suppose there is a DFA M of k states that decides L.
Consider the string $w=0^{k} 1^{k}$ which is in L and also accepted by M.

$$
q_{0} \quad q_{i_{1}} \quad q_{i_{2}} \quad q_{i_{3}}
$$

By pigeonhole principle, $\exists a, b$, where $0 \leq a<b$, such that after processing 0^{a} and $0^{b}, M$'s current state is the same, say q.

More DFAs

$$
w=0^{k} 1^{k}=\overbrace{0_{0^{a}}^{000 \ldots 0} \ldots 0}^{0^{b}} . .01^{k}=0^{a} 0^{b-a} 0^{k-b} 1^{k}
$$

We will construct a string $w^{\prime} \notin L$ (from w) that gets accepted by M. Hence, a contradiction.

If M accepts $w=0^{a} 0^{b-a} 0^{k-b} 1^{k}$, then it will accept $w^{\prime}=0^{a} 0^{k-b} 1^{k}$ as well.
In general, $0^{a} 0^{(b-a) . l} 0^{k-b} 1^{k}$, for $l \geq 0$, will be accepted by M.

Pumping Lemma

Definition: A language L is regular if the there exists a DFA M that decides L.
Pumping Lemma: Let L be a regular language with a DFA of n states. Then for every string w in L such that $|w| \geq n$, we can break w into three strings, $w=x y z$, such that:

1. $y \neq \epsilon$
2. $|x y| \leq n$
3. For all $k \geq 0$, the string $x y^{k} z$ is also in L.

Proof: Similar to the previous proof.

Proving Non-regularity Using Pumping Lemma

Pumping Lemma: Let L be a regular language with a DFA of n states. Then for every string w in L such that $|w| \geq n$, we can break w into three strings, $w=x y z$, such that:

1. $y \neq \epsilon$
2. $|x y| \leq n$
3. For all $k \geq 0$, the string $x y^{k} z$ is also in L.

How to prove a language L non-regular?

- Assume that L is regular and has a DFA of n states.
- Pick a string $w \in L$ such that $|w| \geq n$.
- Show that it is impossible to split w into three string, $w=x y z$, such that all 3 conditions satisfy.

Proving Non-regularity Using Pumping Lemma

Example: Prove that $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is non-regular.
Solution: Suppose L is regular and has a DFA of n states.
Let $w=0^{n} 1^{n}$ be a string in L. Clearly, $|w|=2 n \geq n$.
According to Pumping Lemma, w can be split into 3 strings, $w=x y z$, such that

1) $y \neq \epsilon, 2)|x y| \leq n, 3$) For all $k \geq 0$, the string $x y^{k} z$ is also in L.

We show now that it is impossible to split w so that it satisfies all three conditions.

- If y contains neither 1 s nor 0 s , split will violate condition 1 .
- If y contains some 1 s , split will violate condition 2 .
- If y contains only 0 s , then $x y y z$ will not be in L as $x y y z$ contains more 0 s than 1 s . Hence, it will violate condition 3.

Proving Non-regularity Using Pumping Lemma

Example: Prove that $L=\{w \mid w$ is a palindromic binary string $\}$ is non-regular.
Solution: Suppose L is regular and has a DFA of n states.
Let $w=0^{n} 10^{n}$ be a string in L.
According to Pumping Lemma, w can be split into 3 strings, $w=x y z$, such that

1) $y \neq \epsilon, 2)|x y| \leq n, 3$) For all $k \geq 0$, the string $x y^{k} z$ is also in L.

We show now that it is impossible to split w so that it satisfies all three conditions.

- If y contains neither 1 nor 0 s , split will violate condition 1 .
- If y contains 1 or 0 s after 1 , split will violate condition 2 .
- If y contains only 0 s before 1 , then the $x y y z$ will not be in L as $x y y z$ is not a palindrome. Hence, it will violate condition 3.

Proving Non-regularity Using Pumping Lemma

Example: Prove that $L=\{w \mid w$ is a binary string that contains equal number of 0 s and 1 s$\}$ is non-regular.
Solution: Suppose L is regular and has a DFA of n states.
Let $w=0^{n} 1^{n}$ be a string in L. Clearly, $|w|=2 n \geq n$.
Repeat the argument for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

